organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Hong Tan,^{a,b} Zheng-Wen Zhang,^a Sheng Wang,^a Xin-Jian Song^{a,b} and Yan-Gang Wang^a*

^aCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ^bSchool of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi, Hubei 445000, People's Republic of China

Correspondence e-mail: whxjsong@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ Disorder in main residue R factor = 0.049 wR factor = 0.148 Data-to-parameter ratio = 11.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved 1-(2-Methylbenzoyl)-3-{5-[4-(trifluoromethyl)phenyl]-1,3,4-thiadiazol-2-yl}urea

In the title compound, $C_{18}H_{13}F_3N_4O_2S$, the urea linkage is essentially planar due to the presence of an intramolecular $N-H\cdots O$ hydrogen bond. Intermolecular $N-H\cdots O$ hydrogen bonds link two neighbouring molecules into a centrosymmetric $R_2^2(8)$ dimer. Received 10 November 2005 Accepted 15 November 2005 Online 23 November 2005

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad-spectrum biological properties (Foroumadi et al., 2002; Wang, Wang et al., 2004). Aroyl ureas are known to exhibit diverse biological effects, such as insecticidal, fungicidal, herbicidal and plant-growth-regulating activities (Chen et al., 2005; Wang et al., 1998). Considerable interest has been shown in fluorine-containing compounds. It is therefore worth investigating fluoro derivatives incorporating both a 1,3,4-thiadiazole nucleus and an aroyl urea group. In a previous paper (Wang, Zhao et al., 2004), a series of aroyl ureas containing a 1,3,4-thiadiazole ring have been reported to have good activity as plant-growth regulators. In view of this and as a continuation of our research on the biological properties of this class, a number of new compounds have been synthesized in our laboratory, including the title compound, (I).

The crystal structure (Fig.1) reveals that the urea linkage unit O2-C11-N4-C10-N3-H3A adopts the most stable conformation for the formation of an intramolecular N- $H \cdots O$ hydrogen bond (Song *et al.*, 2005), giving a planar sixmembered ring. Selected bond lengths and angles are listed in Table 1. In the crystal structure, the molecules are linked by pairs of N-H···O hydrogen bonds into centrosymmetric $R_2^2(8)$ dimers (Bernstein *et al.*, 1995; Glidewell *et al.*, 2003) (Fig. 2 and Table 2).

Experimental

The title compound (I) was prepared according to the procedure of Wang *et al.* (2003). Suitable crystals were obtained by vapor diffusion of methanol into a DMF solution at room temperature (m.p. >573 K). Elemental analysis: analysis calculated for $C_{18}H_{13}F_3N_4O_2S$: C 53.20, H 3.22, N 13.79%; found: C 53.11, H 3.35, N 13.62%.

Crystal data

 $\begin{array}{l} C_{18}H_{13}F_{3}N_{4}O_{2}S\\ M_{r} = 406.38\\ \text{Monoclinic, } P2_{1}/c\\ a = 16.844 \ (2) \ \text{\AA}\\ b = 7.3080 \ (11) \ \text{\AA}\\ c = 15.202 \ (2) \ \text{\AA}\\ \beta = 104.964 \ (2)^{\circ}\\ V = 1807.9 \ (4) \ \text{\AA}^{3}\\ Z = 4 \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: none 8650 measured reflections 3169 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.148$ S = 1.103169 reflections 282 parameters H-atom parameters constrained

Та	b	le	1
	~ .		-

Selected geometric parameters (Å, °).

C1-C2	1.491 (5)	C10-O1	1.217 (3)
C5-C8	1.469 (3)	C10-N3	1.348 (3)
C8-N1	1.291 (3)	C10-N4	1.388 (3)
C8-S1	1.733 (2)	C11-O2	1.222 (3)
C9-N2	1.295 (3)	C11-N4	1.376 (3)
C9-N3	1.381 (3)	C11-C12	1.490 (4)
C9-S1	1.718 (2)	C13-C18	1.502 (4)
C2 C2 C1	120 1 (2)	N2 C10 N4	116.2 (2)
$C_3 = C_2 = C_1$	120.1(3)	$N_3 - C_{10} - N_4$	116.3(2)
0/-02-01	120.1 (3)	02-C11-N4	121.7(2)
C6-C5-C8	119.5 (2)	02-011-012	123.5 (2)
NI-08-05	122.7 (2)	N4-C11-C12	114.8 (2)
N1-C8-S1	114.08 (19)	C12-C13-C18	123.4 (2)
C5-C8-S1	123.24 (19)	C8-N1-N2	113.0 (2)
N2-C9-N3	120.2 (2)	C9-N2-N1	111.5 (2)
N2-C9-S1	115.26 (19)	C10-N3-C9	123.0 (2)
N3-C9-S1	124.57 (18)	C11-N4-C10	127.8 (2)
O1 - C10 - N3	122.8 (2)	C9-S1-C8	86.18 (12)
O1-C10-N4	121.0 (2)		
C1-C2-C3-C4	179.7 (3)	N3-C9-N2-N1	177.7 (2)
C1-C2-C7-C6	-179.9(3)	\$1-C9-N2-N1	-0.8(3)
C6-C5-C8-N1	-31.0(4)	C8-N1-N2-C9	-0.3(3)
C4-C5-C8-N1	147.6 (3)	O1-C10-N3-C9	6.2 (4)
C6-C5-C8-S1	148.5 (2)	N4-C10-N3-C9	-174.3(2)
C4-C5-C8-S1	-32.9(4)	N2-C9-N3-C10	166.6 (2)
O2-C11-C12-C17	-142.1(3)	\$1-C9-N3-C10	-15.0(3)
N4-C11-C12-C17	36.8 (3)	O2-C11-N4-C10	-5.3 (4)
O2-C11-C12-C13	35.7 (4)	C12-C11-N4-C10	175.8 (2)
N4-C11-C12-C13	-145.4(2)	O1-C10-N4-C11	-174.3(2)
C17-C12-C13-C14	1.4 (4)	N3-C10-N4-C11	6.1 (4)
C11-C12-C13-C14	-176.4(2)	N2-C9-S1-C8	1.2 (2)
C17-C12-C13-C18	-174.5(3)	N3-C9-S1-C8	-177.2 (2)
C11-C12-C13-C18	7.7 (4)	N1-C8-S1-C9	-1.4(2)
C5-C8-N1-N2	-179.2(2)	C5-C8-S1-C9	179.1 (2)
S1-C8-N1-N2	1.3 (3)		(2)

 $D_x = 1.493 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 2599 reflections $\theta = 2.5-24.0^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 292 (2) K Block, colorless $0.30 \times 0.20 \times 0.20 \text{ mm}$

2619 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.028$
$\theta_{\rm max} = 25.0^{\circ}$
$h = -19 \rightarrow 20$
$k = -8 \rightarrow 7$
$l = -16 \rightarrow 18$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0849P)^{2} + 0.1744P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.37 \text{ e} \text{ Å}^{-3}$

View of the molecule of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. Both disorder components are shown.

Figure 2

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3A\cdots O2$	0.86	1.95	2.614 (3)	133
$N4-H4A\cdotsO1^{i}$	0.86	2.13	2.853 (3)	141

Symmetry code: (i) -x, -y, -z + 1.

All H atoms were initially located in a difference Fourier map. Methyl H atoms were then constrained to an ideal geometry with C– H distances of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about its C–C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93 Å, N–H distances of 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The occupancies of the disordered positions F/F' were refined to 0.432 (16)/0.568 (16).

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from Hubei Provincial Department of Education and the Scientific Research Fund for Distinguished Young Scholars (No. Q200529003).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. & Bi, F. C. (2005). J. Agric. Food. Chem. 53, 38–41.
- Foroumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. & Emami, S. (2002). Il Farmaco, 57, 765–769.
- Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, 09–013.

- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). *SHELXTL*. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Song, X.-J., Tan, X.-H., Li, Y.-H., Zhang, Z.-W. & Wang, Y.-G. (2005). Acta Cryst. E61, o3066–o3068.
- Wang, S., Allan, R. D., Skerritt, J. H. & Kennedy, I. R. (1998). J. Agric. Food. Chem. 46, 3330–3338.
- Wang, Y. G., Wang, Z. Y., Zhao, X. Y. & Song, X. J. (2004). Chin. J. Org. Chem. 24, 1606–1609.
- Wang, Y. G., Zhao, X. Y., Gong, Y. X., Ye, W. F. & Zhang, Z. W. (2003). Chin. J. Org. Chem. 23, 1165–1168.
- Wang, Y. G., Zhao, X. Y., Wang, Z. Y., Chen, C. B. & Zhang, Z. W. (2004). *Chin. J. Org. Chem.* 24, 811–814.