Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(2-Methylbenzoyl)-3-\{5-[4-(trifluoromethyl)-phenyl]-1,3,4-thiadiazol-2-yl\}urea

Xiao-Hong Tan, ${ }^{\text {a,b }}$ Zheng-Wen Zhang, ${ }^{\text {a }}$ Sheng Wang, ${ }^{\text {a }}$ Xin-Jian Song ${ }^{\text {a,b }}$ and Yan-Gang Wang ${ }^{a}$ *
${ }^{\text {a }}$ College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi, Hubei 445000, People's Republic of China
Correspondence e-mail:
whxjsong@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.049$
$w R$ factor $=0.148$
Data-to-parameter ratio $=11.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$, the urea linkage is essentially planar due to the presence of an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link two neighbouring molecules into a centrosymmetric $R_{2}^{2}(8)$ dimer.

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad-spectrum biological properties (Foroumadi et al., 2002; Wang, Wang et al., 2004). Aroyl ureas are known to exhibit diverse biological effects, such as insecticidal, fungicidal, herbicidal and plant-growth-regulating activities (Chen et al., 2005; Wang et al., 1998). Considerable interest has been shown in fluorine-containing compounds. It is therefore worth investigating fluoro derivatives incorporating both a 1,3,4-thiadiazole nucleus and an aroyl urea group. In a previous paper (Wang, Zhao et al., 2004), a series of aroyl ureas containing a 1,3,4-thiadiazole ring have been reported to have good activity as plant-growth regulators. In view of this and as a continuation of our research on the biological properties of this class, a number of new compounds have been synthesized in our laboratory, including the title compound, (I).

(I)

The crystal structure (Fig.1) reveals that the urea linkage unit $\mathrm{O} 2-\mathrm{C} 11-\mathrm{N} 4-\mathrm{C} 10-\mathrm{N} 3-\mathrm{H} 3 A$ adopts the most stable conformation for the formation of an intramolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Song et al., 2005), giving a planar sixmembered ring. Selected bond lengths and angles are listed in Table 1. In the crystal structure, the molecules are linked by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into centrosymmetric $R_{2}^{2}(8)$ dimers (Bernstein et al., 1995; Glidewell et al., 2003) (Fig. 2 and Table 2).

Experimental

The title compound (I) was prepared according to the procedure of Wang et al. (2003). Suitable crystals were obtained by vapor diffusion of methanol into a DMF solution at room temperature (m.p. $>573 \mathrm{~K}$). Elemental analysis: analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$: C 53.20, H 3.22, N 13.79\%; found: C 53.11, H 3.35, N 13.62%.

Received 10 November 2005 Accepted 15 November 2005 Online 23 November 2005

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$
 $M_{r}=406.38$
 Monoclinic, $P 2_{1} / c$
 $a=16.844$ (2) А
 $b=7.3080(11) \AA$
 $c=15.202(2) \AA$
 $\beta=104.964$ (2) ${ }^{\circ}$
 $V=1807.9(4) \AA^{3}$
 $Z=4$

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
8650 measured reflections
3169 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.148$
$S=1.10$
3169 reflections
282 parameters
H -atom parameters constrained
$D_{x}=1.493 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2599 reflections
$\theta=2.5-24.0^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

2619 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-19 \rightarrow 20$
$k=-8 \rightarrow 7$
$l=-16 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0849 P)^{2}\right. \\
& +0.1744 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C1-C2	1.491 (5)	C10-O1	1.217 (3)
C5-C8	1.469 (3)	C10-N3	1.348 (3)
C8-N1	1.291 (3)	C10-N4	1.388 (3)
C8-S1	1.733 (2)	C11-O2	1.222 (3)
$\mathrm{C} 9-\mathrm{N} 2$	1.295 (3)	C11-N4	1.376 (3)
C9-N3	1.381 (3)	C11-C12	1.490 (4)
C9-S1	1.718 (2)	C13-C18	1.502 (4)
C3-C2-C1	120.1 (3)	N3-C10-N4	116.3 (2)
C7-C2-C1	120.1 (3)	O2-C11-N4	121.7 (2)
C6-C5-C8	119.5 (2)	$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12$	123.5 (2)
N1-C8-C5	122.7 (2)	N4-C11-C12	114.8 (2)
N1-C8-S1	114.08 (19)	C12-C13-C18	123.4 (2)
C5-C8-S1	123.24 (19)	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 2$	113.0 (2)
N2-C9-N3	120.2 (2)	C9-N2-N1	111.5 (2)
N2-C9-S1	115.26 (19)	C10-N3-C9	123.0 (2)
N3-C9-S1	124.57 (18)	C11-N4-C10	127.8 (2)
O1-C10-N3	122.8 (2)	C9-S1-C8	86.18 (12)
O1-C10-N4	121.0 (2)		
C1-C2-C3-C4	179.7 (3)	N3-C9-N2-N1	177.7 (2)
C1-C2-C7-C6	-179.9 (3)	$\mathrm{S} 1-\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$	-0.8 (3)
C6-C5-C8-N1	-31.0 (4)	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 9$	-0.3 (3)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8-\mathrm{N} 1$	147.6 (3)	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{N} 3-\mathrm{C} 9$	6.2 (4)
C6-C5-C8-S1	148.5 (2)	N4-C10-N3-C9	-174.3 (2)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8-\mathrm{S} 1$	-32.9 (4)	N2-C9-N3-C10	166.6 (2)
O2-C11-C12-C17	-142.1 (3)	S1-C9-N3-C10	-15.0 (3)
N4-C11-C12-C17	36.8 (3)	$\mathrm{O} 2-\mathrm{C} 11-\mathrm{N} 4-\mathrm{C} 10$	-5.3 (4)
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	35.7 (4)	C12-C11-N4-C10	175.8 (2)
N4-C11-C12-C13	-145.4 (2)	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{N} 4-\mathrm{C} 11$	-174.3 (2)
C17-C12-C13-C14	1.4 (4)	N3-C10-N4-C11	6.1 (4)
C11-C12-C13-C14	-176.4 (2)	N2-C9-S1-C8	1.2 (2)
C17-C12-C13-C18	-174.5 (3)	N3-C9-S1-C8	-177.2 (2)
C11-C12-C13-C18	7.7 (4)	N1-C8-S1-C9	-1.4 (2)
C5-C8-N1-N2	-179.2 (2)	C5-C8-S1-C9	179.1 (2)
$\mathrm{S} 1-\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 2$	1.3 (3)		

Figure 1

View of the molecule of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. Both disorder components are shown.

Figure 2
A partial packing diagram of (I), showing the hydrogen bonding (dashed lines).

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$	0.86	1.95	$2.614(3)$	133
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.13	$2.853(3)$	141

Symmetry code: (i) $-x,-y,-z+1$.
All H atoms were initially located in a difference Fourier map. Methyl H atoms were then constrained to an ideal geometry with C H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA, \mathrm{~N}-\mathrm{H}$ distances of $0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The occupancies of the disordered positions $\mathrm{F} / \mathrm{F}^{\prime}$ were refined to $0.432(16) / 0.568$ (16).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from Hubei Provincial Department of Education and the Scientific Research Fund for Distinguished Young Scholars (No. Q200529003).

organic papers

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. \& Bi, F. C. (2005). J. Agric. Food. Chem. 53, 38-41.
Foroumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. \& Emami, S. (2002). Il Farmaco, 57, 765-769
Glidewell, C., Low, J. N., Melguizo, M. \& Quesada, A. (2003). Acta Cryst. C59, o9-o13.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Song, X.-J., Tan, X.-H., Li, Y.-H., Zhang, Z.-W. \& Wang, Y.-G. (2005). Acta Cryst. E61, o3066-o3068.
Wang, S., Allan, R. D., Skerritt, J. H. \& Kennedy, I. R. (1998). J. Agric. Food. Chem. 46, 3330-3338.
Wang, Y. G., Wang, Z. Y., Zhao, X. Y. \& Song, X. J. (2004). Chin. J. Org. Chem. 24, 1606-1609.
Wang, Y. G., Zhao, X. Y., Gong, Y. X., Ye, W. F. \& Zhang, Z. W. (2003). Chin. J. Org. Chem. 23, 1165-1168.
Wang, Y. G., Zhao, X. Y., Wang, Z. Y., Chen, C. B. \& Zhang, Z. W. (2004). Chin. J. Org. Chem. 24, 811-814.

[^0]: (C) 2005 International Union of Crystallography

